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Abstract

The free vibration and elastic stability of a spinning annular plate transversely in contact with a stationary oscillating

unit is studied in this paper. The oscillating unit consists of two parallel combinations of springs and dampers attached

above and under a mass. Therefore, the displacement of the mass is not the same as that of the disk at the contact point. In

this work, the equations of motion of the spinning disk and the oscillating unit in an inertial coordinate system are given

first, and the displacement of the disk is expressed in terms of the eigenfunctions of the stationary disk. The Galerkin

method is then applied to obtain the discretized system equations for the disk, and these equations are combined with the

equation for the oscillating unit. Finally, the stability analysis is conducted by investigating the eigenvalue problem of the

combined system. Numerical results show that taking account of the stiffness between the oscillating unit and the disk may

bring about extra flutter-type instability between the predominantly oscillating-unit mode and the predominantly reflected

disk modes, and these extra unstable regions are much larger than those of the flutter-type instability between different

kinds of predominantly disk modes.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Spinning disks are widely used components in mechanical engineering from circular saw blades, turbine
rotors to computer disk memory units. Therefore, the dynamic behaviors of spinning disks have attracted
researchers’ interest for a long time. Early works on the vibration of spinning disks dealt primarily with the
determination of the natural frequencies and the mode shapes of the disks [1–3] and with the nonlinear
response of the disk due to large amplitude vibration [4,5].

For computer disk memory units, the interaction of the read/write head with the surface of the disk
demands that the effects of the inertia, stiffness and damping of the head be considered in the analysis. To
minimize the complication of the problem due to the rotational inertia effect of the disk, Iwan and stahl [6]
first studied the free vibration and stability of a stationary circular disk excited by a rotating mass-
spring–damper load system. The displacement of the mass of the load system is assumed to be equal to the
transverse deflection of the disk. Three distinct types of instability are observed in this paper. A region of the
divergence type of instability occurs immediately above each critical speed of the disk. Some regions of the
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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flutter type of instability arise as a consequence of modal interaction of the disk. A region of the flutter type of
instability between a reflected mode and its forward mode, the so-called terminal instability, exists for all load
speeds above a certain limiting value. Later Iwan and Moeller [7] included the rotational inertia effect of the
disk and investigated the free vibration and stability of a spinning disk with a stationary mass-spring–damper
load system. They found that the primary effect of the disk rotation was to stiffen the disk and thereby
increase effective natural frequencies over those of a stationary disk with a rotating load system. Furthermore,
the analysis indicates that the width of the region of the divergence type of instability is a function of the load
stiffness and radius but not of the load mass, and the location of the terminal instability region is a strong
function of the load mass and radius but only a weak function of the load stiffness.

Ono et al. [8] extended Iwan and Moeller’s work to include the corresponding pitching parameters in the
load system and the friction force between the spinning disk and the stationary load system. They found that
the pitching parameters have similar effects as their transverse counterparts, and the friction force tends to
destabilize the forward traveling waves but stabilize the reflected and backward traveling waves. Chen and
Bogy [9,10] studied the effects of load parameters and modal interaction on the natural frequencies and
stability of a spinning disk with a stationary load system. They concluded that adding a small mass (weak
spring) in the load system tends to decrease (increase) the natural frequencies of the forward and backward
traveling waves but tends to increase (decrease) the natural frequencies of the reflected traveling waves; adding
a small damper in the load system tends to stabilize the forward and backward traveling waves but destabilize
the reflected traveling waves.

For circular saws, the blade is often restrained from lateral motion during cutting by guide pads to minimize
the vibration of the blade. Hutton et al. [11] analyzed the dynamic response of a rotating disk subjected to
excitations produced by stationary point loads and restrained by stationary point springs. A general approach
to investigate the instability phenomena due to the interaction between a rotating disk and an interactive
stationary system was developed by Tian and Hutton [12]. Shen and Mote [13–15] presented a series of studies
on parametric instability of stationary circular plates under a rotating mass and of stationary circular plates
with inclusions under a spring or a mass-spring–dashpot system.

In the above-mentioned references, the displacement of the mass of the load system is assumed to be the
same as that of the disk at the contact point. In reality, the displacement of the mass of the load system may
not be the same as that of the disk. Therefore, this work investigates the free vibration and elastic stability of a
spinning annular plate transversely in contact with a stationary oscillating unit. The oscillating unit consists of
two parallel combinations of springs and dampers attached above and under a mass such that the
displacement of the mass is not the same as that of the disk at the contact point.

2. Formulation

Consider an annular plate that is clamped at the inner edge r ¼ a and is free at the outer edge r ¼ b, where
(r,y) is a polar coordinate system fixed in space. The disk is spinning at an angular speed O and is transversely
in contact with a stationary oscillating unit at the point (rP,0). The oscillating unit consists of two parallel
combinations of springs and dampers attached above and under a mass. The lower end of the oscillating unit
is assumed to contact with the plate closely, and the upper end of it is fastened to a fixed support, as shown in
Fig. 1.

With respect to the inertial polar coordinates, the transverse displacement of the plate can be expressed as
w ¼ w(r,y(t),t). Therefore, the equation of motion of a spinning disk with viscous damping under the action of
the stationary oscillating unit is written as
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where D and c are the flexural rigidity and viscous damping coefficient of the disk, respectively; r and h are the
mass density and thickness of the disk, respectively; r4 is a biharmonic operator, and d( � ) is a Dirac delta
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Fig. 1. A spinning disk under a stationary oscillating unit.
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function. The force acted upon the disk by the oscillating unit P is

P ¼ cP _yþ kPy, (2)

where y is the relative displacement of the mass of the oscillating unit, and an overdot denotes a differentiation
with respect to time t. The initial in-plane stresses induced by rotation srr and syy are found to be [16]

srr ¼ d0 þ d1
a

r

� �2
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,
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ð3Þ

in which the constants are given by
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where n is Poisson’s ratio of the disk. The boundary conditions of the disk in terms of the transverse
displacement are

w ¼
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The equation of motion of the oscillating unit is given by

mo €yþ ðcS þ cPÞ _yþ ðkS þ kPÞy ¼ �mo

q2w
qt2
ðrP; 0; tÞ � cS

qw

qt
ðrP; 0; tÞ � kSwðrP; 0; tÞ. (5)
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Therefore, the force acted upon the disk by the oscillating unit can be rewritten as

P ¼ �mo €yþ
q2w
qt2
ðrP; 0; tÞ

� �
� cS _yþ

qw

qt
ðrP; 0; tÞ

� �
� kS yþ wðrP; 0; tÞ½ �. (6)

Eq. (1) is a partial differential equation in spatial coordinates and time, while Eq. (5) is an ordinary
differential equation in time. These two equations are coupled and are very difficult to solve for the exact
solution. Therefore, an approximate method is utilized to eliminate the dependence of the transverse
displacement of the disk on the spatial coordinates. In this work, the Galerkin method is adopted to discretize
the equation of motion of the spinning disk. Assume that the solution of Eq. (1) can be expressed as a linear
combination of the eigenfunctions of the corresponding stationary disk, that is

wðr; y; tÞ ¼
XM
m¼0

XN

n¼0

RmnðrÞ AmnðtÞ cos nyþ BmnðtÞ sin ny½ �, (7)

where Rmn(r) is a combination of Bessel functions such that the displacement in Eq. (7) satisfies the boundary
conditions of the disk. Substituting Eq. (7) into Eq. (1), going through Galerkin’s procedure and combining
Eq. (6) yields the discretized equations for the whole system—the spinning disk and the oscillating unit,

M½ �a00 þ 2aŌ C½ � þ 2Ō G½ �
� �

a0 þ Ke½ � þ Ō
2

Kr½ �

�
þ 2aŌ

2
G½ �
�
a ¼ 0; (8)

where Ō ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rhb4



D

q
O and a ¼ c/2rhO; [M], [C] and [G] are the mass, damping and gyroscopic matrices of

the whole system, respectively; [Ke] and [Kr] are the elastic stiffness matrix and the geometric stiffness matrix
due to rotation, respectively; a is a column matrix formed by all Amn, Bmn and y, and a prime denotes a

differentiation with respect to the dimensionless temporal variable t ¼ t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D


rhb4

q
.

Eq. (8) is a set of the second-order ordinary differential equations in time, and it can be rewritten into a set
of the first-order differential equations as

M½ � 0½ �

0½ � I½ �

" # !
q0 þ
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� �
þ 2aŌ

2
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" # !
q ¼ 0; (9)

where [I] is an identity matrix; ½Kt� ¼ ½Ke� þ Ō
2
½Kr� and q ¼

a0

a

� �
. The solution of Eq. (9) has the form

q ¼ xelt, (10)

where l is a constant scalar, and x is a constant vector. Introducing Eq. (10) into Eq. (9) and dividing both
sides by elt yields the following eigenvalue problem:

l
M½ � 0½ �

0½ � I½ �

" # !
xþ

2aŌ C½ � þ 2Ō G½ � Kt
� �
þ 2aŌ2

G½ �

� I½ � 0½ �

" # !
x ¼ 0: (11)

Because the matrices in Eq. (11) are asymmetric, both the eigenvalues and the eigenvectors of the problem
appear in complex conjugate pairs, i.e., l ¼ x7io and x ¼ y7iz. When the real part of an eigenvalue x
becomes positive, the corresponding mode is unstable. Furthermore, if the imaginary part of this eigenvalue o
is equal to 0, the corresponding mode experiences a divergence type of instability; if the imaginary part of this
eigenvalue is not equal to 0, the corresponding mode experiences a flutter type of instability.

3. Numerical results and discussions

Before conducting the parametric studies of the system parameters on the stability of the whole system—the
disk and the oscillating unit, a comparison of the present results with the existing references is made first. If the
inner radius is assumed to approach zero, and the spring constant and viscous damping coefficient of the lower
spring-damper combination are assumed to approach infinity such that the displacement of the mass is the
same as that of the disk at the contact point, the problem considered in this work is reduced to that studied by
Iwan and Moeller [7]. Fig. 2 shows the real and imaginary parts of the eigenvalues of the problem with a very
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Fig. 2. The real and imaginary parts of the eigenvalues of a spinning disk under a stationary oscillating unit with an extremely stiff lower

spring and damper. n ¼ 0.3, a/b ¼ 10�6, r̄P ¼ 0:6, m̄o ¼ 0:1, k̄P ¼ c̄P ¼ 1010, k̄S ¼ 4:0, c̄S ¼ c̄ ¼ 0.
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small inner-to-outer radius ratio and extremely large spring constant and viscous damping coefficient of
the lower spring-damper combination. Fig. 2(a) shows the real parts of the eigenvalues; Fig. 2(b) shows the
imaginary parts of the eigenvalues. The non-dimensionalized parameters used in this section are defined in the
same way as those in Iwan and Moeller’s paper, i.e., m̄o ¼ mo=M, k̄P ¼ kP



Mb210,

k̄S ¼ kS



Mb210; c̄P ¼ cP=Mb10; c̄S ¼ cS=Mb10; c̄ ¼ c=2rhb10,

where M ¼ prh(b2�a2) is the mass of the disk, and b10 ¼ 1.11805
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D


rhb4

q
is the natural frequency of the

zero nodal circle and one nodal diameter mode of the corresponding stationary disk. The predominantly
forward traveling, backward traveling and reflected plate modes (simply called forward, backward and
reflected modes hereafter) with m nodal circles and n nodal diameters are denoted as ðm; nÞf ; ðm; nÞb and
ðm; nÞr, respectively. Fig. 2(a) reveals that except at four unstable intervals, the real parts of the eigenvalues are
identically zero because the whole system considered here is undamped. Fig. 2(b) reveals that these four
unstable intervals correspond to two divergence-type instability of the ð0; 2Þb and ð0; 3Þb modes as their
frequency curves meet the coordinate axis, and two flutter-type instability by ð0; 2Þr and ð0; 1Þb modes and by
ð0; 3Þr and ð0; 1Þb modes as their frequency curves intersect. The results agree excellently with those in Iwan
and Moeller’s paper.

By piling up the unstable intervals with respect to a certain parameter, stability boundaries of the whole
system can be obtained. Fig. 3 presents the stability boundaries of a spinning annular disk subjected to a
stationary oscillating unit with an extremely large spring constant and viscous damping coefficient of the lower
spring–damper combination such that the displacement of the mass is the same as that of the disk at the
contact point. In this figure, unstable regions are bounded within a pair of stability boundaries. Because of
the space limitation, each unstable region is labeled by a letter instead of the modes involves, and the
nomenclature of all symbols for unstable regions is listed in Table 1. The unstable regions of flutter-type
instability by ð0; 3Þr and ð0; 1Þb modes, flutter-type instability by ð0; 2Þr and ð0; 4Þb modes and flutter-type
instability by ð0; 3Þr and ð0; 4Þb modes are very close. All unstable regions are nearly unchanged with respect to
changes of the mass of the oscillating unit.

The real and imaginary parts of the eigenvalues of a spinning annular disk subjected to a stationary
oscillating unit are illustrated in Fig. 4. The spring constant of the lower spring is small so that the natural
frequency of the oscillating unit is commensurable with the lowest few natural frequencies of the disk, and the
lower damper is absent. Under this circumstance, the displacement of the mass is different from that of the
disk at the contact point. Fig. 4(a) shows the real parts of the eigenvalues; Fig. 4(b) shows the imaginary parts
of the eigenvalues. There is a horizontal dash line at o around 3.5 in Fig. 4(b) representing the frequency line
of the independent oscillating unit. The frequency line becomes a curve due to the interaction between the
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Table 1

Nomenclature of symbols for unstable regions

Symbol Instability type

A Divergence-type instability due to the (0,2)b mode

B Flutter-type instability between the (0,3)r and the (0,1)b modes

C Flutter-type instability between the (0,4)r and the (0,1)b modes

D Flutter-type instability between the (0,2)r and the (0,1)b modes

E Flutter-type instability between the (0,2)r and the (0,4)b modes

F Flutter-type instability between the (0,2)r and the (0,3)b modes

G Flutter-type instability between the (0,3)r and the (0,4)b modes

H Divergence-type instability due to the (0,3)b mode

I Flutter-type instability between the (0,3)r and the (0,2)b modes

J Flutter-type instability between the (0,4)r and the (0,3)b modes

K Flutter-type instability between the (0,3)r and the oscillating-unit modes

L Flutter-type instability between the (0,4)r and the oscillating-unit modes

M Flutter-type instability between the (0,2)r and the oscillating-unit modes

N Flutter-type instability between the (0,4)r and the (0,2)b modes

O Divergence-type instability due to the (0,4)b mode
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Fig. 3. The stability boundaries of a spinning disk under a stationary oscillating unit with an extremely stiff lower spring and damper.
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oscillating unit and the disk. Flutter-type instability occurs as this frequency curve intersects those of the
reflected modes. The other small unstable intervals in Fig. 4(a) correspond to the divergence-type instability of
the backward modes and the flutter-type instability by the reflected and backward modes. The stability
boundaries of this problem are depicted in Fig. 5. The unstable regions of the divergence-type instability of the
backward modes and the flutter-type instability by the reflected and backward modes are almost constant with
respect to the mass ratio. But the unstable regions of the flutter-type instability between the predominantly
oscillating-unit mode and the reflected modes lean toward the lower speed range because an increase in the
mass will reduce the natural frequency of the oscillating unit. When the unstable region of the flutter-type
instability by the ð0; 3Þr and the predominantly oscillating-unit modes meets that of the flutter-type instability
by the ð0; 4Þr and the predominantly oscillating-unit modes at m̄o around 0.03, these two unstable regions
coalesce into one unstable region because they share a common mode—the predominantly oscillating-unit
mode. The unstable regions of the flutter-type instability between the predominantly oscillating-unit mode and
the reflected modes are much larger than those purely by the predominantly disk modes only. Furthermore,
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a comparison between Figs. 5 and 3 reveals that the unstable regions purely by the predominantly disk modes
only become smaller. Therefore, inclusion of a spring between the disk and the mass of the oscillating unit will
bring about new and larger unstable regions between the predominantly oscillating-unit mode and the
reflected modes but repress the original instability purely by the predominantly disk modes only.

Fig. 6 shows the real and imaginary parts of the eigenvalues of a spinning annular disk subjected to a
stationary oscillating unit with a stiffer lower spring. Fig. 6(a) shows the real parts of the eigenvalues, and
there are four small and one large unstable intervals. Fig. 6(b) shows the imaginary parts of the eigenvalues,
and the dash line and curves are the frequency line of the oscillating unit alone and the frequency curves of the
free spinning disk, respectively. Due to the interaction between the oscillating unit and the disk, the frequency
line of the oscillating unit becomes a tortuous curve, and the frequency curves of the disk near the frequency
line of the oscillating unit become zigzag. Away from this frequency line, the frequency curves of the disk are
basically unaffected. The four small unstable intervals are formed by the divergence- or flutter-type instability
of the predominantly disk modes, while the large unstable interval is formed by two flutter-type instability
between the predominantly oscillating-unit mode and the reflected modes connecting together. Fig. 7 presents
the stability boundaries of the whole system versus the spring constant of the lower spring. The un-
stable region of the flutter-type instability by the ð0; 2Þr and ð0; 4Þb modes lies inside the unstable region of the



ARTICLE IN PRESS
ξ

Ω

ω

0
2
4
6
8

10
12
14
16
18
20
22
24

(0,4)r(0,3)r

(0,2)r(0,1)b
(0,2)b

(0,3)b

(0,4)b

(0,0)

(0,1)f

(0,2)f

(0,3)f

(0,4)f

0 4 521 3 6 7 8 9 10

Ω

0 4 521 3 6 7 8 9 10
-0.4

-0.2

0.0

0.2

0.4

(a) (b)

Fig. 6. The real and imaginary parts of the eigenvalues of a spinning disk under a stationary oscillating unit. n ¼ 0.3, a/b ¼ 0.1, r̄P ¼ 0:7,
m̄o ¼ 0:1, k̄P ¼ 0:2, k̄S ¼ 0:05, c̄P ¼ c̄S ¼ c̄ ¼ 0.

Fig. 7. The effect of the lower spring on the stability boundaries of a spinning disk under a stationary oscillating unit. n ¼ 0:3, a/b ¼ 0.1,

r̄P ¼ 0:7, m̄o ¼ 0:1, k̄S ¼ 0:05, c̄P ¼ c̄S ¼ c̄ ¼ 0.

T.H. Young, C.Y. Lin / Journal of Sound and Vibration 298 (2006) 307–318314
flutter- type instability of the ð0; 3Þr and ð0; 1Þb modes. The widths of the unstable regions of the predominantly
disk modes widen as k̄P increases, but the locations of these unstable regions stay at the same positions. The
unstable region of the flutter-type instability between the ð0; 3Þr and the predominantly oscillating-unit modes
and the unstable region of the flutter-type instability between the ð0; 4Þr and the predominantly oscillating-unit
modes coalesce as they meet at k̄P around 0.095. As k̄P increases, the unstable regions of the flutter-type
instability between the reflected modes and the predominantly oscillating-unit mode enlarge and lean toward
the higher speed range because an increase in k̄P will raise the natural frequency of the oscillating unit. The
effect of the upper spring is similar to that of the lower spring.

Fig. 8 shows the stability boundaries of a spinning annular disk with a larger inner-to-outer radius ratio
subjected to a stationary oscillating unit. In this figure, the unstable region of the flutter-type in-
stability between the ð0; 3Þr and the predominantly oscillating-unit modes crosses over the unstable region of
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Fig. 8. The stability boundaries of a spinning disk with a larger inner-to-outer radius ratio under a stationary oscillating unit. n ¼ 0.3,
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the flutter- type instability between the ð0; 4Þr and ð0; 1Þb modes, but these two unstable regions do not merge
into one unstable region because they do not have a common mode involved. A comparison with Fig. 7 shows
that the unstable regions in this figure are either different from those in Fig. 7 or at different locations for the
same instability. The reason is that the frequency curves of the disk change quite a lot for different inner-to-
outer radius ratios. The unstable regions in this figure are much smaller than those in Fig. 7 because for the
same outer radius, a larger inner radius stands for a stiffer disk. Therefore, a larger inner-to-outer radius ratio
is favorable to the stability of the whole system.

Fig. 9 illustrates the stability boundaries of the whole system versus the location of the oscillating unit. All
the unstable regions, no matter the instability by the predominantly disk modes only or the instability between
the reflected modes and the predominantly oscillating-unit mode, enlarge as r̄P increases. This may be
attributed to the fact that a longer distance between the contact point and the disk center will increase the
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bending moment of the disk produced by the action of the oscillating unit. Therefore, the effect of the location
of the oscillating unit is destabilizing when it is moved towards the rim of the disk.

The effect of the lower damper of the oscillating unit on the eigenvalues of the whole system is shown in
Fig. 10. Fig. 10(a) shows the real parts of the eigenvalues. The single curve at the lower side of the figure
belongs to the predominantly oscillating-unit mode, and the other curves near the horizontal coordinate axis
belong to the predominantly disk modes. One of these curves crosses the horizontal coordinate axis at
Ō ¼ 4:35, which is the first critical speed by (0,2)b mode. Fig. 10(b) shows the imaginary parts of the
eigenvalues. The frequency curves in this figure look the same as those of a free spinning disk and an
independent oscillating unit. Interaction between the oscillating unit and the disk disappears. The stability
boundary is a vertical line at Ō ¼ 4:35, and the unstable region lies right to the stability boundary. It means
that once there exists a lower damper in the oscillating unit, no matter how small the damping coefficient is,
the corresponding backward mode will become negatively damped if the spin rate exceeds the first critical
speed. This phenomenon has been reported by Iwan and Moeller [7] and again by Shen and Mote [13].
Consequently, the effect of the lower damper is undesirable to the stability of the whole system although it is
favorable to the response of the predominantly oscillating-unit mode. Similar effect can be observed for the
upper damper of the oscillating unit.

Fig. 11 depicts the effect of the viscous damping of the disk on the eigenvalues of the whole system.
Fig. 11(a) shows the real parts of the eigenvalues. The single curve around the horizontal coordinate axis
belongs to the predominantly oscillating-unit mode, and the other curves lying beneath this curve belong to
the predominantly disk modes. The three concavities correspond to the intersection of the predominantly
oscillating-unit mode and the backward modes, while the other three convexities correspond to the
intersection of the predominantly oscillating-unit mode and the reflected modes. The convexities in this case
are flatter and wider, while the convexities in the case of an undamped disk (e.g., Fig. 4) are sharper and
narrower. These convexities are the unstable intervals. Fig. 11(b) shows the imaginary parts of the eigenvalues.
Again the frequency curves in this figure look the same as those of a free spinning disk and the independent
oscillating unit. Fig. 12 illustrates the stability boundaries of this problem. There are two large unstable
regions and some very small unstable regions. These small unstable regions are formed by the instability of the
predominantly disk modes only and will disappear as the damping of the disk increases. However, one of the
two large unstable regions is formed by the unstable region of the flutter-type instability between the ð0; 3Þr
and the predominantly oscillating-unit modes and the unstable region of the flutter-type instability of the
ð0; 4Þr and the predominantly oscillating-unit modes connecting together. The other large unstable region is
formed by the flutter-type instability between the ð0; 2Þr mode and the predominantly oscillating-unit mode.
The sizes of these two large unstable regions are independent of the damping coefficient of the disk. Therefore,
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the effect of the viscous damping of the disk depresses the unstable regions by the predominantly disk modes
only but is unfavorable to the flutter-type instability by the predominantly oscillating-unit mode and the
reflected modes.

4. Conclusions

The free vibration and elastic stability of a spinning annular plate transversely in contact with a stationary
oscillating unit is studied in this work. The oscillating unit consists of two parallel combinations of springs and
dampers attached above and under a mass such that the displacement of the mass is not the same as that of the
disk at the contact point. Parametric studies of the system parameters on the stability of the whole system—
the disk and the oscillating unit—are conducted in this work. The following conclusions can be drawn:
(1)
 If the inner radius is assumed to approach zero, and the spring constant and viscous damping coefficient of
the lower spring-damper combination are assumed to approach infinity such that the displacement of the
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mass is the same as that of the disk at the contact point, the problem considered in this work is reduced to
that studied by Iwan and Moeller [7]. Numerical results in this work are identical to those in Iwan and
Moeller’s paper.
(2)
 Inclusion of the stiffness between the disk and the mass of the oscillating unit may bring about new and
larger unstable regions between the predominantly oscillating-unit mode and the reflected modes but
repress the original instability purely by the predominantly disk modes.
(3)
 The effect of the mass of the oscillating unit is insignificant to the widths of all unstable regions of the
whole system but will make the unstable regions of the flutter-type instability between the predominantly
oscillating-unit mode and the reflected modes lean toward the lower speed range.
(4)
 An increase in the spring constant of either the lower spring or the upper spring of the oscillating unit will
enlarge all unstable regions of the whole system, and the unstable regions of the flutter-type instability
between the reflected modes and the predominantly oscillating-unit mode will lean toward the higher speed
range.
(5)
 Existence of either the lower damper or the upper damper in the oscillating unit will make the backward
mode to become negatively damped once the spin rate exceeds the first critical speed but will increase the
damping of the predominantly oscillating-unit mode.
(6)
 The effect of the viscous damping of the disk will depress the unstable regions by the predominantly disk
modes only but is unfavorable to the flutter-type instability by the predominantly oscillating-unit mode
and reflected modes.
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